Sub-mm Linear Ion Trap Mass Spectrometer Made Using Lithographically Patterned Ceramic Plates

Ailin Li

Brigham Young University, Provo, UT

Coauthors: Qinghao Wu, Yuan Tian, Derek Andrews, Aaron Hawkins, and Daniel E. Austin

Towards the Portable Mass Spectrometer

High performance Fragile Cannot be moved No hurry High cost

Good performance Rugged Goes anywhere Fast Results Low cost

40 SN

Mass Analyzer Miniaturization Leads to Smaller Overall Instrument

Radiofrequency Quadrupole Ion Traps

•High sensitivity, throughput, and resolution

- •Higher pressure than other mass analyzers
- Tandem capabilities, ion-molecule reactions
- •Many trap geometries, each with unique capabilities

Obstacles to Miniaturization of Mass Analyzers (esp. ion traps)

Making accurate fields:

- Machining / fabrication accuracy
- Electrode alignment
- Surface roughness

Practical issues:

- Reduced access for ions or ionizing radiation
- Reduced ion count (space charge)
- Keeping arrayed traps parallel
- Insufficient stopping distance to trap ions

From Austin et al, JASMS 2006

Two-Plate Ion Traps

Each plate contains series of lithographically-defined metal "wires", overlaid with resistive germanium

Different RF amplitudes applied to each "wire" produce trapping fields

Different Trapping Geometries of Two-plate Ion Traps

Quadrupole + toroidal, the "Coaxial Trap"

A linear-type ion trap

Two-plate Linear Ion Trap

Original design: $r_0 = 2.19$ mm Mass spectra with $r_0 < 1$ mm were also demonstrated

Planar LIT Results $r_0 = 2.19 \text{ mm}$

Experiment to Optimize the Thickness of the Germanium Layer

Ge layer: prevents charge build-up on insulating ceramic; establishes continuous, well-defined potential

Results inconclusive—may be other differences such as plate alignment

Simple Miniaturization Experiment: Moving the Plates Closer Together

Without remaking the plates, spacing was decreased from 4.38 mm to 1.90 mm

Fields were redesigned using different capacitor values on PCBs

Plate alignment becomes significant factor in performance

Reduced S/N as expected

Planar LIT Results $r_0 = 0.95 \text{ mm}$

Sub-mm LIT

Sub-mm LIT Ion Trapping Capacity

r ₀ = 362 μm	Sub-mm LIT	Cylindrical Ion Trap			
V _{0-p}	50 V	190 V			
Ω	4 MHz	3.8 MHz			
Capacity	85000	29000			

Linear ion trap

Cylindrical ion trap

Digital Waveform Operation

Why Digital Operation?

Advantages

1. Less voltage requirement

MOSFET: Metal-Oxide-Semiconductor Field-Effect Transistor

Voltage: +/- 30 V_{0-p}

2. Variable digital waveforms

S. Bandelow et al. / International Journal of Mass Spectrometry 353 (2013) 49-53

Electron-gun Improvement

Old e-gun vs. New designed e-gun

Electron-gun Improvement

As the ion trapping capability in the small plate is lower than that in the large trap, a new e-gun with higher electron transmission efficiency is needed to increase the ionization.

Electron-gun Improvement

Filament Voltage: -61 V

Detector: Faraday Cup

Pressure: High Vacuum

Converging onto a Truly Portable Mass Spectrometer

Acknowledgments

Ailin Li

Dr. Daniel Austin

Dr. Qinghao Wu

Yuan Tian

Dr. Aaron Hawkins

Derek Andrews

Thanks also to:

Dr. Steve Lammert (Perkin Elmer Corp.)

Funding from NASA, NSF and DoD

Gas breakdown? Or not?

Next generation design LIT: Pressure * Gap ≈ 2.8E-7 1.00E+04

Germanium? Or Silicon?

T= 300 K	Ge	Si			
Electron mobility	3900 cm ² V ⁻¹ s ⁻¹	1600 cm ² V ⁻¹ s ⁻¹			
Hole mobility	1900 cm ² V ⁻¹ s ⁻¹	430 cm ² V ⁻¹ s ⁻¹			
Band gap	0.66 eV	1.12 eV			
Melting point	1211 K	1687 K			
Heat of vaporation	334 kJ/mol	383 kJ/ mol			

Ge: More conductive → Better material Easier to evaporate → Easier in plate fabrication

Electric Field Simulated by SIMION

150 configurations were simulated to find a similar electric field with the published optimal electric field of RIT.

			·							
Selected particle group:										
					Use	Electron	Proton	Default		
Num particles: 🔽	1000									
Mass:	single value	•	0.00054857990946					u		
Charge:	single value	•	-1					e		
Source position:	cylinder distribution		Center: { x: 6	y: 8	0	z: 111	}	mm or gu		
		-	Axis: { x: 0	y: 0		z: 1	}			
			Radius: 0.05	Length	130	🗹 Filled				
Velocity format:	direction+KE	•								
Direction:	cone direction distribution		Axis vector: { x: 8		y: 80	z: 110)	} unitless		
		Ĭ	Half angle (deg): 18	0	🔽 Fill					
KE:	single value	•	0.1					eV		
TOB:	single value	•	0					usec		
CWF:	single value	•	1					unitless		
Color:	single value	•	1					index		